Anti-ischemic Effect of Monoterpene Citronellol on Experimental Stroke Models Mediated by Pro-inflammatory Cytokines

Author:

Yin Yong1,Liu Xiao2,Zhu Chunji34

Affiliation:

1. Department of Neurology, Pingyi County People's Hospital, No.7, Jinhua Road, Pingyi County, Linyi City, Shandong Province, 273300, China

2. Department of Neurology, The Second People`s Hospital of Liaocheng, No. 306, Jiankang Street, Linqing City, Shandong Province, 252600, China

3. Department of Neurosurgery, Linqing People's Hospital, No. 317, Yaokou Street, Linqing City, Shandong Province, 252600, China

4. Department of Neurology, Shouguang People's Hospital, No. 3173 Health Street, Shouguang City, Shandong Province, 262700, China

Abstract

Background: Phytomedicines are proven to treat various chronic diseases as these compounds are cost-effective with few or no side effects. Elucidating the ameliorative effect of phytomedicine on cerebral ischemia may be a potent alternative therapy. Citronellol, a monoterpene alcohol, is one such phyto compound present in the essential oils of Cymbopogon nardus and Pelargonium geraniums and has immense pharmacological properties such as antihyperalgesic, anticonvulsant and antinociceptive. Objective: In the present work, the anti-ischemic effect of citronellol in both cellular and animal models of stroke was analyzed. Methods: Citronellol-pretreated SH-SY5Y cells were subjected to oxygen-glucose deprivation and reperfusion. The cells were assessed for cell viability and LDH quantification. Inflammatory cytokines were estimated in the cell lysate of citronellol pretreated OGD-R induced cells. Healthy young SD rats were pretreated with citronellol and induced with MCAO-R. The control group was comprised of sham-operated rats treated with saline. Group II was comprised of MCAO/R-induced untreated rats. Groups III and IV rats were previously treated with 10 mg/kg and 20 mg/kg citronellol, respectively, for 7 consecutive days and induced with MCAO/R. Brain edema was analyzed by quantifying the water content and the percentage of infarct was assessed using the TTC staining technique. Acetylcholinesterase activity and neurological scoring were performed to assess the neuroprotective activity of citronellol. Lipid peroxidation and antioxidant levels were quantified to evaluate the antioxidant activity of citronellol. The anti-inflammatory activity of citronellol was assessed by quantifying proinflammatory cytokines using commercially available ELISA kits. Results: Citronellol treatment significantly ameliorated neuronal damage in both cellular and animal stroke models. Prior treatment of citronellol significantly decreased the inflammatory cytokines and increased the antioxidants. Citronellol treatment effectively protected the rats from MCAO/R-induced brain edema. Conclusion: Our results confirm that citronellol is an effective anti-ischemic drug with antioxidant and anti-inflammatory properties.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3