Role of TlyA in the Biology of Uncultivable Mycobacteria

Author:

Sharma Mukul1ORCID,Singh Pushpendra1ORCID

Affiliation:

1. ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India

Abstract

Abstract: TlyA proteins are related to distinct functions in a diverse spectrum of bacterial pathogens, including mycobacterial spp. There are several annotated proteins that function as hemolysin or pore-forming molecules that play an important role in the virulence of pathogenic organisms. Many studies reported the dual activity of mycobacterial TlyA as ‘hemolysin’ and ‘Sadenosylmethionine dependent rRNA methylase’. To act as a hemolysin, a sequence must have a signal sequence and transmembrane segment, which helps the protein enter the extracellular environment. Interestingly, the mycobacterial tlyA has neither traditional signal sequences of general/ sec/tat pathways nor any transmembrane segments. Still, it can reach the extracellular milieu with the help of non-classical signal mechanisms. Also, retention of tlyA in cultivable mycobacterial pathogens (such as Mycobacterium tuberculosis and M. marinum) as well as uncultivated mycobacterial pathogens despite their extreme reductive evolution (such as M. leprae, M. lepromatosis and M. uberis) suggests its crucial role in the evolutionary biology of pathogenic mycobacteria. Numerous virulence factors have been characterised by the uncultivable mycobacteria, but the information of TlyA protein is still limited in terms of molecular and structural characterisation. The genomic insights offered by comparative analysis of TlyA sequences and their conserved domains reveal pore-forming activity, which further confirms its role as a virulence protein, particularly in uncultivable mycobacteria. Therefore, this review presents a comparative analysis of the mycobacterial TlyA family by sequence homology and alignment to improve our understanding of this unconventional hemolysin and RNA methyltransferase TlyA of uncultivable mycobacteria.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3