Synthesis of Acid Free Benzaldehyde by Highly Selective Oxidation of Benzyl Alcohol Over Recyclable Supported Palladium Catalyst

Author:

Antony Annam Renita1,Salla Sunitha2,Duraikannu Shanthana Lakshmi3

Affiliation:

1. Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai-119, Tamil Nadu,India

2. Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai-119, Tamil Nadu,India

3. Collegeof Pharmacy, Al-kitab University, AltunKupry,Iraq

Abstract

Aim and Objectives: This research work deals with the highly selective oxidation of benzyl alcohol to benzaldehyde by palladium doped graphene oxide catalyst which was synthesized by a modified Hummer’s method. The effect of reaction parameters like temperature, time and catalyst loading were studied. It was found that fine tuning of reaction temperature and presence of small amount of benzyl alcohol in product prevents undesirable formation of benzoic acid crystals which forms on auto oxidation of benzaldehyde. Benzoic acid or substituted benzoic acid formation was hindered by the presence of < 2% benzyl alcohol at a reaction temperature of 50˚C which was further supported by palladium doped graphene oxide catalyst. Materials and Methods: Modified Hummer’s method was used for the synthesis of graphene oxide and palladium doped graphene oxide was synthesized by insitu method in which graphene oxide dispersed in 20mL of distilled water was ultrasonicated for 2h. Palladium solution was added and it was further ultrasonicated for 30min for homogeneous deposition of palladium on graphene oxide support. To this, 2 mL of sodium borohydride solution was added and stirred at room temperature for 4h. The resulting solution was centrifuged and the residue was dried at 60°C for 12 h. Results: The morphological characteristics and the functional groups of supported catalyst were characterized by X-ray diffraction, Field emission scanning spectroscopy, Fourier transform infrared spectroscopy and the produced benzaldehyde was characterized by gas chromatography. Conclusion: PdGO catalyst was prepared using sodium borohydride as a reducing agent by modified Hummer’s method and utilized for the oxidation of benzyl alcohol to benzaldehyde. A maximum conversion of 89% and selectivity of 99% was obtained and the catalyst could be reused upto five times without any compromise on conversion and selectivity.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3