Three Major Phosphoacceptor Sites in HIV-1 Capsid Protein Enhances its Structural Stability and Resistance Against the Inhibitor: Explication Through Molecular Dynamics Simulation, Molecular Docking and DFT Analysis

Author:

Rasool Nouman1ORCID,Hussain Waqar2ORCID

Affiliation:

1. Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

2. National Center of Artificial Intelligence, Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan

Abstract

Background: Human Immunodeficiency Virus 1 (HIV-1) is a lentivirus, which causes various HIV-associated infections. The HIV-1 core dissociation is essential for viral cDNA synthesis and phosphorylation of HIV-1 capsid protein (HIV-1 CA) plays an important role in it. Objective: The aim of this study was to explicate the role of three phosphoserine sites i.e. Ser109, Ser149 and Ser178 in the structural stability of HIV-1 CA, and it’s binding with GS-CA1, a novel potent inhibitor. Method: Eight complexes were analyzed and Molecular Dynamics (MD) simulations were performed to observe the stability of HIV-1 CA in the presence and absence of phosphorylation of serine residues at four different temperatures i.e. 300K, 325K, 340K and 350K, along with molecular docking and DFT analysis. Results: The structures showed maximum stability in the presence of phosphorylated serine residue. However, GS-CA1 docked most strongly with the native structure of HIV-1 CA i.e. binding affinity was -8.5 kcal/mol (Ki = 0.579 µM). Conclusion: These results suggest that the phosphorylation of these three serine residues weakens the binding of GS-CA1 with CA and casts derogatory effect on inhibition potential of this inhibitor, but it supports the stability of HIV-1 CA structure that can enhance regulation and replication of HIV-1 in host cells.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3