Protective effects of liriodendrin on myocardial infarction-induced fibrosis in rats via the PI3K/Akt autophagy pathway: A network pharmacology study

Author:

Zhang Ping1,Liu Xuanming2,Yu Xin2,Zhuo Yuzhen3,Li Dihua3,Yang Lei3,Lu Yanmin3

Affiliation:

1. Department of Cardiology, Tianjin Nankai Hospital, Tianjin, 300100, China

2. Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

3. Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China

Abstract

Background: Liriodendrin (LIR) has been reported to improve cardiac function in rats following myocardial infarction. However, its role and mechanism in reparative myocardial fibrosis remain unclear. Methods: In this study, a rat model of myocardial fibrosis was established via left anterior descending artery ligation and randomly divided into three groups (n = 6 per group): sham-operated, myocardial infarction, and LIR intervention (100 mg/kg/day) groups. The pharmacological effects of LIR were assessed using echocardiography, hematoxylin, and eosin (H&E) staining, and Masson staining. Network pharmacology and bioinformatics were utilized to identify potential mechanisms of LIR, which were further validated via western blot analysis. Results: Our findings demonstrated that LIR improved cardiac function, histology scores, and collagen volume fraction. Moreover, LIR downregulated the expression of Beclin-1, LC3-II, and LC3-I while upregulating the expression of p62, indicating LIR-activated autophagy in the heart after myocardial infarction. Further analysis revealed that the PI3K/Akt signaling pathway was significantly enriched and validated by western blot. This analysis suggested that the ratios of p-PI3K/PI3K, p Akt/Akt, and p-mTOR/mTOR were significantly increased. Conclusion: LIR may attenuate myocardial infarction-induced fibrosis in rats by inhibiting excessive myocardial autophagy, with the potential mechanism involving the activation of the PI3K/Akt/mTOR pathway.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3