Histone Methylation Regulation as a Potential Target for Non-alcoholic Fatty Liver Disease

Author:

Liu Yuanbin1ORCID,Chen Mingkai1ORCID

Affiliation:

1. Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, P.R. China

Abstract

Abstract: Epigenetic modulations are currently emerging as promising targets in metabolic diseases, including non-alcoholic fatty liver disease (NAFLD), for their roles in pathogenesis and therapeutic potential. The molecular mechanisms and modulation potential of histone methylation as a histone post-transcriptional modification in NAFLD have been recently addressed. However, a detailed overview of the histone methylation regulation in NAFLD is lacking. In this review, we comprehensively summarize the mechanisms of histone methylation regulation in NAFLD. We conducted a comprehensive database search in the PubMed database with the keywords 'histone', 'histone methylation', 'NAFLD', and 'metabolism' without time restriction. Reference lists of key documents were also reviewed to include potentially omitted articles. It has been reported that these enzymes can interact with other transcription factors or receptors under pro-NAFLD conditions, such as nutritional stress, which lead to recruitment to the promoters or transcriptional regions of key genes involved in glycolipid metabolism, ultimately regulating gene transcriptional activity to influence the expression. Histone methylation regulation has been implicated in mediating metabolic crosstalk between tissues or organs in NAFLD and serves a critical role in NAFLD development and progression. Some dietary interventions or agents targeting histone methylation have been suggested to improve NAFLD; however, there is still a lack of additional research and clinical translational relevance. In conclusion, histone methylation/demethylation has demonstrated an important regulatory role in NAFLD by mediating the expression of key glycolipid metabolism-related genes, and more research is needed in the future to explore its potential as a therapeutic target.

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3