Crystal Clamping in (Ba, Sr)TiO3 Borosilicate Glass Ceramics

Author:

Yadav Avadhesh Kumar1ORCID,Gautam C.R.2

Affiliation:

1. Department of Physics, F.A.A. Govt. P.G. College (an Associated College of University of Lucknow, Lucknow), Mahmudabad, Sitapur 261203, India

2. Department of Physics, University of Lucknow, Lucknow 226007 India

Abstract

Background: Perovskite glass-ceramics have attracted the attention of researchers and scientists due to their wide range of applications in energy storage devices, solar cells, photovoltaic cells, etc. Barium titanate is the first discovered perovskite glass-ceramics. After the discovery of barium titanate, several perovskite glass-ceramics have been discovered. Several substitutions have also been attempted for the progress of perovskites. Barium strontium titanate is one of the perovskite glass-ceramics in which few barium ions are replaced by strontium ions. The crystal clamping is also found in a few perovskite glass-ceramics, e.g., PbTiO3. Aims: In the present investigation, our focus is on the synthesis and crystallization behavior of barium strontium titanate borosilicate glass-ceramics in glass system 64[(Ba1-xSrx).TiO3]- 30[2SiO2.B2O3]-5[K2O]-1[La2O3] (0.0 ≤ x ≤ 1.0). Methods: Synthesized glasses were characterized by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. Results: The crystallization behavior showed the formation of major crystalline phase of BaTiO3/ BaSrTiO3/ Ba1.91Sr0.09TiO4/ SrTiO3 along with some pyrochlore phase of Ba2TiSi2O8/ Sr2TiSi2O8/ Ba2Ti2B2O9/ Sr2B2O5. The crystalline phase formation depends upon both composition and the crystallization process. The crystal clamping was attributed to synthesizing glass-ceramics samples during the crystallization. Conclusion: Bulk barium strontium titanate glass-ceramics were successfully prepared by the melt quench method. X-ray diffraction studies confirmed the formation of the major perovskite phase. During the crystallization of glasses, crystal clamping is attributed to the barium strontium titanate glass-ceramics.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3