Recent Advances in Organocatalytic Methods for the Synthesis of Deuterated Aldehydes#

Author:

Dhayalan Vasudevan1ORCID

Affiliation:

1. Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India

Abstract

Abstract: Formyl-selective deuteration of aldehydes is one of the important synthetic methods in the field of medicinal chemistry. Aldehyde-d is often used as an important building block for pharmaceutical and drug synthesis due to its versatile reactivity and applicability. Due to the recent interest and development in the use of deuterated pharma drugs, there is an urgent need for simple and practical synthetic methods that are effective in producing a broad range of highly deuterated (up to 99% D) functionalized aryl, heteroaryl, alkyl, and alkenyl aldehyde moieties. Organocatalytic processes mediated by NHC have recently been used to achieve selective deuterium labelling processes; this system is frequently used to analyze drug distribution, metabolism, absorption, and excretion (ADME). Moreover, deuterated pharmaceutical compounds are designed to develop therapeutic effectiveness and reduce significant side effects and toxicity by increasing the half-life of the isotope drug response. Remarkably, in 2019-2022, NHC-mediated various catalytic approaches have been dramatically developed. One such method is a practical and mild synthesis of functionalized deuterated aldehydes, drug molecules, therapeutic agents, small and complex natural products, and their analogues using a green method in the presence of water-d as a cheap reagent. These modern methods prepared deuterated drug scaffolds such as 3-formyl rifamycin, midecamycin, menthol, ibuprofen, naproxen, etc. In this concern, we could provide a succinct description of the NHC-organocatalyzed modern synthetic strategies, as well as a mild greener approach for the functional group-selective deuterium isotopic labeling of various formyl compounds using commercially available deuterium sources (D2O and CD3OD).

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3