Technical Support System for Power System Load Modeling

Author:

Sun Tiantian1ORCID,Bian Shaorun1ORCID,Sun Yu2ORCID,Wang Zhenshu1ORCID,Li Wenqiao1ORCID,Chong Fayu1ORCID

Affiliation:

1. School of Electrical Engineering, Shandong University, Jinan, China

2. State Grid Hangzhou Power Supply Company, Hangzhou, China

Abstract

Background: In order to better establish accurate load models and meet the practical demand of current power system load modeling, it is necessary to establish related technical support systems for power system load modeling. Objective: The purpose of the paper was to construct the overall scheme of power system load modeling technology support system and complete the development of the system. Methods: Based on the modular design idea, the system adopts a multi-level architecture combining B/S and C/S modes, covering the key technologies of substation classification based on selforganizing neural network algorithm, load dynamic characteristic classification based on lifting wavelet packet algorithm, load model parameter identification and load modeling based on adaptive interactive multiple model (AIMM) algorithm. Results: After actual operation verification, the built technology support system can well solve the related problems of substation classification, load dynamic characteristic classification, load model parameter identification and load modeling. It has the characteristics of a friendly man-machine interface, simple operation and strong extensibility. Conclusion: The built technology support system provides powerful technical support for improving the load data management level of the power system and establishing an accurate load model, and promotes the practical process of load modeling theory.

Funder

Shandong Provincial Nature Science of China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Reference23 articles.

1. Lu Q.; Digital power systems. Dianli Xitong Zidonghua 2000,24,1-4

2. Arif A.; Wang Z.; Wang J.; Mather B.; Bashualdo H.; Zhao D.; Load Modeling-A Review. IEEE Trans Smart Grid 2018,9(6),5986-5999

3. Yong T.; Zhang H.; Hou J.; Zhang D.; Study on essential principle and methods for load modeling. Power Syst Technol 2007,31,1-5

4. Behrens P.; Time-dependent load modeling in distribution networks-implementation and practical experience Power Industry Computer Applications Conference IEEE 2001,408-412

5. Rafsanjani S.; Sedighizadeh T.; Kalantar M.; Dadashzadeh M.R.; Load modeling for power flow and transient stability computer studies with LOADMOD software Proceedings of the IASTED International Conference on Applied Simulation and Modeling Rhodes, Greece 2007,522-527

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3