Affiliation:
1. Department of Mathematics, University of Petroleum and Energy Studies, Dehradun 248007, India
2. Department of Mathematics and Statistics, Gurukula Kangri Vishwavidyalaya, Haridwar 249404, India
Abstract
Background:
In this article, an efficient direct method has been proposed in order to
solve physically significant variational problems. The proposed technique finds its basis in Bernstein
polynomials multiwavelets (BPMWs). The mechanism of the proposed method is to transform
the variational problem into an algebraic equation system through the use of BPMWs.
Objective:
Since the necessary condition of extremization consists of a differential equation that
cannot be easily integrated into complex cases, an approximated numerical solution becomes a necessity.
Our primary objective was to establish a wavelet-based method for solving variational problems
of physical interest. Besides being computationally more effective, the proposed approach
yields relatively more accurate results than other comparable methods. The approach employs fewer
basis elements, which in turn increase the simplicity, decrease the calculation time, and furnishes
better results.
Methods:
An operational matrix of integration, which is based on the BPMWs, is presented. We
substituted the approximated values of x , unknown function ξ (x) and their derivative functions
( ), ( ),..... ( ) ξ ′ x ξ ′′ x ξ n x with BPMWs operational matrix of integration and BPMWs. On substituting
the respective values in the given variational problem, it gets converted into a system of algebraic
equations. The obtained system is further solved using the Lagrange multiplier.
Results:
The results obtained yield a greater degree of convergence as compared to other existing
numerical methods. Numerical illustrations based on physical variational problems and the comparisons
of outcomes with exact solutions demonstrate that the proposed method yields better efficiency,
applicability, and accuracy.
Conclusion:
The proposed method gives better results than other comparable methods, even with
the use of a fewer number of basis elements. The large order of matrices, such as 32, 64, and 512,
obtained by using other available methods is far too high to achieve accuracy in results in comparison
to the ones we obtained by using matrices of relatively lower orders, such as 7, 8 and 13, in the
proposed method. This method can also be used for extremization functional occurring in electrical
circuits and mechanical physical problems.
Publisher
Bentham Science Publishers Ltd.
Subject
Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献