Application of Bernstein Polynomial Multiwavelets for Solving Non Linear Variational Problems with Moving and Fixed Boundaries

Author:

Dixit Sandeep1ORCID,Pandey Shweta2ORCID,Verma Sag Ram2ORCID

Affiliation:

1. Department of Mathematics, University of Petroleum and Energy Studies, Dehradun 248007, India

2. Department of Mathematics and Statistics, Gurukula Kangri Vishwavidyalaya, Haridwar 249404, India

Abstract

Background: In this article, an efficient direct method has been proposed in order to solve physically significant variational problems. The proposed technique finds its basis in Bernstein polynomials multiwavelets (BPMWs). The mechanism of the proposed method is to transform the variational problem into an algebraic equation system through the use of BPMWs. Objective: Since the necessary condition of extremization consists of a differential equation that cannot be easily integrated into complex cases, an approximated numerical solution becomes a necessity. Our primary objective was to establish a wavelet-based method for solving variational problems of physical interest. Besides being computationally more effective, the proposed approach yields relatively more accurate results than other comparable methods. The approach employs fewer basis elements, which in turn increase the simplicity, decrease the calculation time, and furnishes better results. Methods: An operational matrix of integration, which is based on the BPMWs, is presented. We substituted the approximated values of x , unknown function ξ (x) and their derivative functions ( ), ( ),..... ( ) ξ ′ x ξ ′′ x ξ n x with BPMWs operational matrix of integration and BPMWs. On substituting the respective values in the given variational problem, it gets converted into a system of algebraic equations. The obtained system is further solved using the Lagrange multiplier. Results: The results obtained yield a greater degree of convergence as compared to other existing numerical methods. Numerical illustrations based on physical variational problems and the comparisons of outcomes with exact solutions demonstrate that the proposed method yields better efficiency, applicability, and accuracy. Conclusion: The proposed method gives better results than other comparable methods, even with the use of a fewer number of basis elements. The large order of matrices, such as 32, 64, and 512, obtained by using other available methods is far too high to achieve accuracy in results in comparison to the ones we obtained by using matrices of relatively lower orders, such as 7, 8 and 13, in the proposed method. This method can also be used for extremization functional occurring in electrical circuits and mechanical physical problems.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MLWs Integrative Operational Matrix Scheme for Solving Integro Differential Equations;2023 12th International Conference on System Modeling & Advancement in Research Trends (SMART);2023-12-22

2. A Numerical Approach Based on Modified Lucas Wavelets for Functional Variational Problems Through Integral Operational Matrix;International Journal of Applied and Computational Mathematics;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3