EEG Wavelet Coherence Based Analysis of Neural Connectivity in Action Video Game Players in Attention Inhibition and Short-term Memoryretention Task

Author:

Hazarika Jupitara1,Kant Piyush1,Dasgupta Rajdeep1,Laskar Shahedul Haque1

Affiliation:

1. National Institute of Technology, Silchar, Assam, 788010, India

Abstract

Background: The involvement in action video gaming alters the cognitive abilities and hence affects the neural functionality. Electroencephalogram (EEG) favorably provides the measure. Wavelet coherence, which is a wavelet transform based feature that provides useful information regarding synchronized activity between two signals. It does not depend on the stationarity of the signal and hence very much relevant for non-stationary EEG application. Methods: We aimed to examine how the task-related synchronization pattern of action video game players (AVGPs) differs from non-AVGPs. EEG data were collected from thirty-five young and healthy male participants while performing an attention inhibition task and a visuospatial short-term memory-retention task. The sub-frequency components, theta, alpha, beta and gamma bands of EEG were extracted using Discrete wavelet transform (DWT). The intra and inter-hemispheric coherence in EEG sub-frequency bands were assessed as a feature for the analysis. Results: Theta, alpha, beta and gamma coherence has shown a significant difference (p<0.05) between AVGPs and non-AVGPs in both the visuo-spatial tasks in intra and inter-hemispheric functionality. More than 90% classification accuracies are achieved with ANFIS algorithm. Results also indicate that frontoparietal connectivity is significantly improved in AVGPs in both the visual sensory tasks considered. Conclusion: These EEG based analysis reports enhanced neural communication with improved attention inhibition and short-term memory retention in AVGPs. Result also established the Wavelet coherence as an effective tool in understanding the neural communication among different brain locations.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3