Mapping Exchangeable Protons to Monitor Protein Alterations in the Brain of an Alzheimer’s Disease Mouse Model by Using MRI

Author:

Jahng Geon-Ho1,Choi Wonmin2,Chung Julius J.2,Kim Sang T.3,Rhee Hak Y.4

Affiliation:

1. Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, #892 Dongnam-ro, Gangdong-gu, Seoul 05278, Korea

2. Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea

3. Biomedical Research Institute, Bundang Hospital in Seoul National University College of Medicine, #172gil Dolma-ro, Bundang-gu, Seongnam City, Geonggee-do 13605, Korea

4. Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, #892 Dongnam-ro, Gangdong-Gu, Seoul 05278, Korea

Abstract

Objective: The study aimed to investigate exchangeable proton signals of Aβ proteins of the brains of Alzheimer’s disease (AD) model mice by using a chemical exchange-sensitive spin-lock (CESL) MR imaging technique. Method: Eight non-transgenic (Tg) mice (5 young and 3 old) and twelve Tg-APPswe/PSdE9 mice (5 young and 7 old) were used in this study. CESL Z-spectra were obtained by using two saturation powers, which were ω1 = 25 Hz with TSL = 3.0 s and ω1 = 500 Hz with TSL = 150 ms, at 71 offsets with uneven intervals between the offset frequencies at Ω = ±7.0 ppm at a 9.4-T animal MRI system. For Zspectrum analyses, regions of interest (ROIs) were drawn in the cortex, hippocampus, and thalamus of both hemispheres. Magnetization transfer ratio asymmetry (MTRasym) curves were obtained from the Zspectra. The Mann-Whitney test was used to compare the MTRasym values between the Tg and non-Tg mice for each offset frequency and for each ROI. Results: The water saturation width of the full Z-spectrum was narrow with the 25-Hz saturation power, but relatively broad with the 500-Hz saturation power. With the 25-Hz CESL saturation power, most of the MTRasym values were negative for 3.5-, 3.0-, 2.0-, and 0.9-ppm offset frequencies and the MTRasym values were significantly different between the control and Tg groups only in the left thalamus region at 3.5 ppm offset (p=0.0487). The MTRasym values were -6% to -7% for both 3.5 and 3.0 ppm, but less than -2% for both 2.0 and 0.9 ppm. With 500-Hz CESL saturation power, all the MTRasym values were positive for the 3.5-, 3.0-, 2.0-, and 0.9-ppm offset frequencies and the MTRasym values were not significantly different between the control and Tg groups at all ROIs and at all offset frequencies. However, a trend towards a significant difference was observed between the control and Tg groups in the right cortex at 3.5 ppm (p=0.0578). The MTRasym values were 6% to 9% for 3.5, 3.0, and 2.0 ppm, but less than 2% for 0.9 ppm. Conclusion: In an in-vivo AD model experiment, MTRasym values increased with the high saturation power than with the low saturation power. The MTRasym values were not significantly different, except in the left thalamus region at 3.5 ppm offset. The CESL technique should be further developed to enable its application in the brain of patients with neurodegenerative diseases.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Neurology,Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3