Association of the MAOB rs1799836 Single Nucleotide Polymorphism and APOE ε4 Allele in Alzheimer’s Disease

Author:

Leko Mirjana B.1,Perković Matea N.2,Erjavec Gordana N.2,Klepac Nataša3,Štrac Dubravka Š.2,Borovečki Fran3,Pivac Nela2,Hof Patrick R.4,Šimić Goran1

Affiliation:

1. Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia

2. Department of Molecular Medicine, Institute Ruder Boskovic, Zagreb, Croatia

3. Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia

4. Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States

Abstract

Background: The dopaminergic system is functionally compromised in Alzheimer’s Disease (AD). The activity of Monoamine Oxidase B (MAOB), the enzyme involved in the degradation of dopamine, is increased during AD. Also, increased expression of MAOB occurs in the postmortem hippocampus and neocortex of patients with AD. The MAOB rs1799836 polymorphism modulates MAOB transcription, consequently influencing protein translation and MAOB activity. We recently showed that cerebrospinal fluid levels of amyloid β1-42 are decreased in patients carrying the A allele in MAOB rs1799836 polymorphism. Objective: The present study compares MAOB rs1799836 polymorphism and APOE, the only confirmed genetic risk factor for sporadic AD. Methods: We included 253 participants, 127 of whom had AD, 57 had mild cognitive impairment, 11 were healthy controls, and 58 suffered from other primary causes of dementia. MAOB and APOE polymorphisms were determined using TaqMan SNP Genotyping Assays. Results : We observed that the frequency of APOE ε4/ε4 homozygotes and APOE ε4 carriers is significantly increased among patients carrying the AA MAOB rs1799836 genotype. Conclusion: These results indicate that the MAOB rs1799836 polymorphism is a potential genetic biomarker of AD and a potential target for the treatment of decreased dopaminergic transmission and cognitive deterioration in AD.

Funder

NIH

European Regional Development Fund

The Croatian Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Neurology (clinical),Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3