Efficient Removal of Methyl Orange from Wastewater by Polymeric Chitosan-iso-vanillin

Author:

Alabbad Eman A.

Abstract

Introduction: Water pollution is a serious issue in several countries. In addition, because of limited water resources, the recycling of wastewater is crucial. Consequently, new and effective sorbents are required to reduce the cost of wastewater treatment as well as to mitigate the health problems caused by water pollution. Methods: In this study, the removal of Methyl Orange (MO) dye from wastewater using a chitosan-iso-vanillin polymer was evaluated. The removal of MO from an aqueous solution was studied in a batch system, using the modified chitosan polymer. Results: The results indicate that the removal of MO by the modified chitosan was affected by the solution pH, sorbent dosage, initial MO concentration, contact time, and temperature. The experimental data were fitted to the Langmuir, Freundlich, and Temkin isotherms, and Freundlich isotherm showed the best fit. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order rate equations. Thus, the removal of MO was controlled via chemisorption, and the removal rate was 97.9% after 3 h at an initial MO concentration of 100 ppm and a sorbent dose of 0.05 g. The adsorption behavior of the modified chitosan for the removal of MO was well-described using the pseudo-second-order kinetic model. Intraparticle diffusion analysis was also conducted, and the thermodynamic properties, including entropy (∆S), enthalpy (∆H), and free energy (∆G), were determined. Conclusion: The pH, initial MO concentration, sorbent dosage, adsorption temperature, and contact time had a significant effect on the adsorption of MO by chitosan-iso-vanillin.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3