CD163 in Macrophages: A Potential Biomarker for Predicting the Progression of Diabetic Nephropathy based on Bioinformatics Analysis

Author:

Zhang Xiaodong1,Wang Xiaoxia2ORCID,Li Rui2,Liu Ting1,Jia Yanyan1,Gao Xingxing2

Affiliation:

1. Department of Nephrology, The First Hospital of Shanxi Medicinal University, Taiyuan, China

2. Renal Department, Shanxi Medicial University, Taiyuan, China

Abstract

Objective: This study aimed to identify the potential biomarkers in DN. Method: DN datasets GSE30528 and GSE47183 were downloaded from the Gene Expression Omnibus database. Immune cell infiltration was analyzed using CIBERSORT. Weighted gene co-expression network analysis (WGCNA) was performed to obtain the module genes specific to DN. The relevant genes were identified intersecting the module genes and differentially expressed genes (DEGs). The core genes were identified using the MCC algorithm in Cytoscape software. ROC and Pearson analyses alongside gene set enrichment analysis (GSEA) were performed to identify the key gene for the core genes. Finally, we performed the Spearman to analyze the correlation between key gene and glomerular filtration rate (GFR), serum creatinine (Scr), age and sex in DN. Results: CIBERSORT analysis revealed the immune cell infiltration in the DN renal tissue and Venn identified 12 relevant genes. Among these, 5 core genes, namely TYROBP, C1QA, C1QB, CD163 and MS4A6A, were identified. Pearson analyses revealed that immune cell infiltration and expression of core genes are related. The key genes with high diagnostic values for DN were identified to be CD163 via ROC analyses. After Spearman correlation analysis, the expression level of CD163 was correlated with GFR (r =0.27), a difference that nearly reached statistical significance (P =0.058). However, there was no correlation between the level of CD163 and age (r =-0.24, P =0.09), sex (r =-0.11, P=0.32) and Scr (r=0.15, P=0.4). Conclusion: We found that CD163 in macrophages may be a potential biomarker in predicting and treating DN.

Funder

National Natural Science Foundation

International Cooperation of Shanxi Science and Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3