Proteome Analysis of CD4+ T Cells Reveals Differentially Expressed Proteins in Infertile Polycystic Ovary Syndrome Patients

Author:

Nasri Fatemeh1,Zare Maryam1,Doroudchi Mehrnoosh1,Gharesi-Fard Behrouz1

Affiliation:

1. Department of Immunology, Shiraz University of Medical Sciences, Shiraz,Iran

Abstract

Background: Polycystic ovary syndrome (PCOS) is the most frequent endocrine disorder affecting 6–7% of premenopausal women. Recent studies revealed that the immune system especially CD4+ T helper cells are important in the context PCOS. Proteome analysis of CD4+ T lymphocytes can provide valuable information regarding the biology of these cells in the context of PCOS. Objective: To investigate immune dysregulation in CD4+ T lymphocytes at the protein level in the context of PCOS using two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). Methods: In the present study, we applied two-dimensional gel electrophoresis / mass spectrometry to identify proteins differentially expressed by peripheral blood CD4+ T cells in ten PCOS women compared with ten healthy women. Western blot technique was used to confirm the identified proteins. Results: Despite the overall proteome similarities, there were significant differences in the expression of seven spots between two groups (P <0.05). Three proteins, namely phosphatidylethanolamine-binding protein 1, proteasome activator complex subunit 1 and triosephosphate isomerase 1 were successfully identified by Mass technique and confirmed by western blot. All characterized proteins were over-expressed in CD4+ T cells from patients compared to CD4+ T cells from controls (P <0.05). In-silico analysis suggested that the over-expressed proteins interact with other proteins involved in cellular metabolism especially glycolysis and ferroptosis pathway. Conclusion: These findings suggest that metabolic adjustments in CD4+ T lymphocytes, which is in favor of increased glycolysis and Th2 differentiation are important in the context of PCOS.

Funder

Shiraz University of Medical Science

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3