Comparison of fatigue model results for rough surface elastohydrodynamic lubrication

Author:

Qiao H1,Evans H P1,Snidle R W1

Affiliation:

1. Cardiff School of Engineering, Cardiff University, Cardiff, UK

Abstract

The paper compares the results of applying different fatigue failure models to surfaces that experience elastohydrodynamic lubrication (EHL) and have surface roughness features which are large compared with the equivalent smooth surface film thickness. The surface profiles used for the comparisons reported are taken from test gear surfaces used in an FZG gear test. The surface has a roughness of 0.31 μm Ra, with peak to valley dimensions of the order 1.5 μm. The tips of the asperities have been modified by running-in during the gear test. A transient EHL analysis was carried out using contacting components having this profile for a number of sliding speeds and nominal viscosity values. From these analyses, time-dependent pressure and shear stress distributions at the contacting surfaces were calculated. The resulting subsurface stress field was obtained relative to axes fixed in the moving surfaces using an elastic analysis so as to give the stress history at each point in a representative test section of the contacting component. A number of multi-axial fatigue criteria based on a critical plane approach were applied to the test section and the results compared. In addition, a varying amplitude multi-axial fatigue theory based on shear strain cycles was also applied to the section. The cycle counts were obtained using the rainflow counting method and the accumulated damage in a single pass through the contact area was calculated. In comparing the results obtained, the various fatigue models were found to identify the same asperity features as being those most prone to fatigue.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3