Structural optimization of the automobile frontal structure for pedestrian protection and the low-speed impact test

Author:

Shin M-K1,Yi S-I2,Kwon O-T2,Park G-J3

Affiliation:

1. BK21 Division, Hanyang University, Ansan City, Republic of Korea

2. Department of Mechanical Engineering, Hanyang University, Ansan City, Republic of Korea

3. Division of Mechanical and Information Management Engineering, Hanyang University, Ansan City, Republic of Korea

Abstract

A variety of regulations are involved in the design of an automobile frontal structure. The regulations are pedestrian protection, the Federal Motor Vehicle Safety Standard (FMVSS) part 581 bumper test, and the Research Council for Automobile Repairs (RCAR) test. The frontal structure consists of the bumper system and a crash box that connects the bumper system and the main body. The detailed design of the bumper system is performed to meet two conditions: first, regulation for pedestrian protection (lower-legform impact test); second, FMVSS part 581. In the two regulations, the stiffness requirements of the bumper system conflict with each other. In order to meet lower leg protection, a relatively soft bumper system is required, while a relatively stiff system is typically needed to manage the pendulum impact. A new bumper system is proposed by adding new components and is analysed by using the non-linear finite element method. An optimization problem is formulated to incorporate the analysis results. Each regulation is considered as a constraint from a loading condition, and two loading conditions are used. Response surface approximation optimization is utilized to solve the formulated problem. RCAR requires reduction in the repair cost when an accident happens. The repair cost in a low-speed crash could be reduced by using an energy-absorbing structure such as the crash box. The crash box is analysed by using the non-linear finite element method. An optimization problem for the crash box is formulated to incorporate the analysis results. Discrete design using orthogonal arrays is utilized to solve the formulated problem in a discrete space.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference23 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3