Affiliation:
1. Division of Energy Environmental Systems, Faculty of Engineering, Hokkaido University, Sapporo, Japan
Abstract
With ultra-high exhaust gas recirculation (EGR) suppressing the in-cylinder soot and nitrogen oxides (NO x) formation as well as with the exhaust oxidation catalyst removing the engine-out total unburned hydrocarbon (THC) and carbon monoxide (CO) emissions, clean diesel combustion in terms of low regulated emissions (NO x, particulate matter, THC, and CO) can be established in an operating range up to 50 per cent load. However, unregulated emissions such as aldehydes, aromatics, and 1,3-butadiene, which are seen as a severe threat to human health, are concerned when operating the engine with ultra-high EGR. In this study, the THC emissions from a diesel engine operated with ultra-high EGR low-temperature combustion were speciated using Fourier transform infrared spectroscopy. Some unregulated toxic emissions including aldehydes, aromatics, 1,3-butadiene, and some low molecular hydrocarbons dramatically increase in the ultra-high EGR low-temperature combustion regime. The exhaust oxidation catalyst is effective to remove aldehydes and some unsaturated hydrocarbons, but aromatics and methane generated from the ultra-high EGR operation are hardly reduced, particularly at higher loads.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献