Affiliation:
1. Engineering Consultant Wangen im Allgäu, Germany
2. University of Liverpool Impact Research Centre, Department of Mechanical Engineering UK
Abstract
An experimental programme is reported which examines the progressive collapse behaviour of some thin-walled closed-section structural sections made from high-strength steels under quasi- static and impact axial loads. A comparison is made with theoretical formulae, which have been used successfully for predicting the behaviour of mild steel thin-walled structures. Ten quasi-static crush tests and 46 impact tests were conducted on spot-welded top-hat and laser- welded square sections. The thin-walled sections were made from two different types of high-strength steel and one mild steel, the mechanical properties of which were determined experimentally from quasi-static and dynamic tensile tests. Although no specific change in the collapse mode was observed, the limited weight-specific energy absorption e ciency of the high-strength steels under dynamic loadings hinders the weight-reduction potential of crashworthy designs. An unexpected difference in the structural effectiveness of spot-welded top-hat sections made from mild steels and high-strength steels was identified, but was not present for similar square sections. This difference further accentuated the loss in the advantage of high-strength steels over mild steels, especially for spot-welded top-hat sections, and led to differences in the agreement between the experimental results and the theoretical predictions.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献