Affiliation:
1. Department of Automotive, Mechanical and Structures Engineering, Cranfield University, Cranfield, UK
Abstract
Detailed computational fluid dynamics (CFD) analyses of airflow and convective heat dissipation from a standard disc with radial vanes gave vital information regarding its weak points. Heat transfer from vanes is found to be particularly non-uniform, offering the largest scope for increasing local and average values of the coefficient of convective heat dissipation. A relatively simple modification — installation of an additional small vane (per channel, between the existing vanes) — demonstrated the ability to increase convective cooling from the ventilation channels. The radial position of these additional vanes was altered from disc ID towards OD, and best results were obtained with the vanes placed at the channel outlets (OD). An improvement in the total convective cooling (product of the average convective heat transfer coefficient and the entire disc wetted area) of nearly 14 per cent was achieved. In spite of better cooling, the new design has lower mass (air) flow when compared with the baseline design. The results are also presented in the form of Nusselt numbers, enabling their wider use. Conducted validation provided strong confidence in the accuracy of the results when searching for new solutions.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献