Chart for the Investigation of Thermodynamic Cycles in Internal Combustion Engines and Turbines

Author:

Gilchrist J. M.1

Affiliation:

1. Senior Lecturer in Mechanical Engineering, College of Technology, Belfast.

Abstract

The development of the internal combustion turbine engine has reawakened interest in the study of thermodynamic problems associated with internal combustion engines. Graphical solutions find favour because ( a) widely varying mixtures of gases are used in modern engines, ( b) the specific heats of the gases vary with temperature and pressure, and ( c) the complete combustion of hydrogen, carbon, etc., cannot occur at high temperatures owing to dissociation. In the paper it is shown by suitable selection of scales how the temperature-internal energy graph may be used to indicate enthalpy, and, for engine expansions, the work done and the energy supplied. In turbines and turbo-compressors the heat drop, velocity change, losses, etc., are given by readings from the temperature and internal energy graph. The method is applied to a general cycle which embraces the Otto, Diesel, Atkinson, Humphrey, etc., cycles. To determine the work done and efficiency calculation is eliminated entirely. An indicator diagram taken from an oil engine is examined and the heat exchange for arbitrarily chosen parts of the cycle estimated. Internal combustion turbine cycles are discussed and the advantages of stage reheating and inter-cooling demonstrated. Energy-mixture strength tables, for temperature intervals of 200 deg. C. (360 deg. F.), are supplied for mixtures between 100 per cent weak and 20 per cent rich.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Problem of Predicting Rate of Heat Release in Diesel Engines;Proceedings of the Institution of Mechanical Engineers, Conference Proceedings;1969-09

2. Study of burning rate and nature of combustion in diesel engines;Symposium (International) on Combustion;1963-01

3. STUDY OF BURNING RATE AND NATURE OF COMBUSTION IN DIESEL ENGINES;Ninth Symposium (International) on Combustion;1963

4. Relation between Fuel Injection and Heat Release in a Direct-Injection Engine and the Nature of the Combustion Processes;Proceedings of the Institution of Mechanical Engineers: Automobile Division;1960-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3