Affiliation:
1. Tsinghua University National Tribology Laboratory Beijing, People's Republic of China
Abstract
Molecular dynamics simulation has been performed in the present study for a Lennard-Jones (LJ) fluid in Poiseuille flow to examine the Theological behaviour of ultra-thin lubricating films. The results show that as two solid walls continuously approach each other, the effective viscosity of the confined fluid increases and goes towards divergence; the critical pressure of the phase transition declines as the film thickness reduces; when the separation exceeds ten molecular layers, however, the pressure curve slopes gently and tends to an asymptotic value-the bulk transition pressure of the lubricant; and an in-plane ordering structure will develop in the film, which originates from the wall-fluid interface and grows towards the middle of the film as the system pressure increases. It is concluded that the rheological performance of the lubricant may become film thickness dependent and a solid-liquid transition may be induced when the film is molecularly thin.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献