Molecular dynamics simulation of ultra-thin lubricating films

Author:

Hu Y-Z1,Wang H1,Guo Y1,Zheng L-Q1

Affiliation:

1. Tsinghua University National Tribology Laboratory Beijing, People's Republic of China

Abstract

Molecular dynamics simulation has been performed in the present study for a Lennard-Jones (LJ) fluid in Poiseuille flow to examine the Theological behaviour of ultra-thin lubricating films. The results show that as two solid walls continuously approach each other, the effective viscosity of the confined fluid increases and goes towards divergence; the critical pressure of the phase transition declines as the film thickness reduces; when the separation exceeds ten molecular layers, however, the pressure curve slopes gently and tends to an asymptotic value-the bulk transition pressure of the lubricant; and an in-plane ordering structure will develop in the film, which originates from the wall-fluid interface and grows towards the middle of the film as the system pressure increases. It is concluded that the rheological performance of the lubricant may become film thickness dependent and a solid-liquid transition may be induced when the film is molecularly thin.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3