Affiliation:
1. Imperial College of Science, Technology and Medicine Department of Mechanical Engineering London
Abstract
The prediction of traction (friction) in lubricated rolling-sliding contacts remains a challenging problem despite the development of the realistic Maxwell-Eyring-limiting shear stress model by Johnson and co-workers in the 1980s. This is largely because there is a strong coupling between the elastohydrodynamic traction and the film temperature. An added complication is that the heat conducted into the rubbing surfaces, as well as influencing traction directly, also determines the temperature in the inlet to the contact and hence the thickness of the elastohydrodynamic film. In the present paper, the traction model of Johnson et al. is combined with a heat transfer analysis of the contacting bodies as well as the film thickness regression equation. In addition, the variations in the lubricant's rheological properties with temperature and pressure based upon the measurements of Muraki et al. have been included. The traction equation is expressed in dimensionless form and is solved using a simple iterative scheme, which in many cases allows estimation of the traction without the use of a computer. Closed-form equations for the friction are given for each of the traction regimes.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献