Affiliation:
1. Railway Technical Research Institute Tokyo, Japan
2. Tokyo Engineering University Tokyo, Japan
3. Koyo Seiko Company, Limited Tokyo, Japan
Abstract
The adhesion force between rail and wheel is one of the important factors for proceeding towards the realization of high-speed railway. On the other hand, it is supposed that the water film formed between the rail and wheel has a remarkable influence on the adhesion force under rainy condition at higher speeds. In this paper, taking Bett and Cappi's viscosity values of water, which show quite a different behaviour from the viscosity of oil, the influence has been investigated of important factors such as rolling speed, contact pressure and temperature on water film thickness for a smooth surface by applying elastohydrodynamic lubrication theory. Based on the numerical solutions, an empirical equation has been developed for water film thickness relating to rolling speed, load and material parameter by using a linear regression method and comparing it with other authors' works on a lower material parameter or elastic-isoviscous contact. Furthermore, in order to understand the influence of the above factors and the surface roughness on the adhesion force, adhesion coefficients have been calculated on a trial basis in the case of rough surface contact under limited conditions, and the theoretical results have been compared with the measured values of the tests on Japanese Shinkansen vehicles in the field.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献