Reference adjustment for a high-acceleration and high-precision platform via A-type of iterative learning control

Author:

Wu J. H.1,Ding H1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, People's Republic of China

Abstract

This paper studies the repetitive motion control of a high-acceleration and high-precision platform driven by linear motors. The control scheme comprises an anticipatory iterative learning control (A-ILC) component and a cascaded control structure including an inner-loop velocity PI controller and an outer-loop position P controller. During the motion process, the cascaded controller remains invariant while the A-ILC adjusts the reference command cycle by cycle to achieve better performance. Experiments are carried out to validate the proposed control structure. The results confirm that the proposed control scheme can improve the system performance significantly in both low-speed trajectory tracking motions and fast point-to-point motion. In the experiments, P-type and D-type ILCs are also utilized to adjust the reference command. Compared with the A type, P-type ILC leads to larger tracking error bounds and D-type ILC lacks a fast convergence rate for low-speed motions, while for fast point-to-point motion these two types of ILC are unable to work well.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3