Experimental verification of cross-angle for noise reduction in hydraulic piston pumps

Author:

Johansson A1,Övander J2,Palmberg J-O2

Affiliation:

1. Parker Hannifin, Sweden

2. Department of Mechanical Engineering, Linköping University, Sweden

Abstract

One of the most important drawbacks with hydraulic systems is noise and vibration, which mainly originate from the hydrostatic pump. A great number of noise-reducing design features have been developed, but they are all, to a greater or lesser extent, sensitive to variations in operational conditions. The present paper is concerned with optimal design and experimental verification of the cross-angle in an axial piston pump. The cross-angle is a small fixed incline of the swash plate in the direction that is perpendicular to the traditional displacement direction. It enables effective noise reduction throughout the whole range of displacement angles. Simulation-based optimization is used to design a pump with optimal cross-angle and a matching valve plate. The design is manufactured and experimentally evaluated. Source flow measurements using the two-microphone method show good agreement between simulation and experiments, which verifies the applicability of the simulation model used. The benefits from using the cross-angle are then verified by comparing it with a pump with a traditional swash plate design, i.e. without the cross-angle. Both source flow measurements and sound level measurements in an anechoic chamber show good improvements from using the cross-angle.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3