The Modelling, Prediction, and Experimental Evaluation of Gear Pump Meshing Pressures with Particular Reference to Aero-Engine Fuel Pumps

Author:

Eaton M1,Keogh P S2,Edge K. A.2

Affiliation:

1. Goodrich Engine Control Systems, Birmingham, UK

2. Department of Mechanical Engineering, University of Bath, Bath, UK

Abstract

This paper presents the development of a model for the evaluation of pressure transients occurring within an involute tooth form twin-pinion gear pump and addresses, in particular, the influence of cavitation. The latter can cause erosion, limiting the life of such pumps, and liberate hard particles, leading to secondary damage elsewhere. The model considers the inter-tooth volumes that are formed at the roots of the driver and driven gears and utilizes the continuity equations by considering compressible flow into and out of these volumes. Cavitation arising from insufficient flow into the expanding inter-tooth volumes is taken into account. The continuity equations are expressed in terms of fluid density rather than pressure. Hence correct solutions are ensured even during cavitating conditions, when the minimum void pressure is fixed at the appropriate vapour pressure. The effectiveness of the model is assessed through gear pump meshing pressure measurement and flow visualization. The significant influence of inlet pressure ripple on low-pressure predictions is also investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3