Affiliation:
1. Engine Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
Abstract
Homogeneous charge compression ignition (HCCI) combustion is an alternative to current engine combustion systems and is used as a method to reduce emissions. It has the potential nearly to eliminate engine-out NOx emissions while producing diesel-like engine efficiencies, when a premixture of gas-phase fuel and air is burned spontaneously and entirely by an autoignition process. However, when direct injection is used for diesel fuel mixture preparation in engines, the complex in-cylinder flow field and limited mixing times may result in inhomogeneity of the charge. Thus, in order to minimize non-uniformity of the charge, early injection of the fuel is desirable. However, when fuel is injected during the intake or early compression stroke, the use of high-pressure injection is limited by the relatively low in-cylinder gas pressure because of spray impingement on the cylinder walls. Thus, it is also of interest to consider low-pressure injectors as an alternative. In the present paper, the parametric behaviour of the combustion characteristics in an HCCI engine operated with a low-pressure fuel injector were investigated through numerical simulations and engine experiments. Parameters including the start-of-injection (SOI) timing and exhaust gas recirculation were considered, and diesel and n-heptane fuels were used. The results show good agreement of behaviour trends between the experiments and the numerical simulations. With its lower vaporization rates, significant effects of the SOI timing and intake gas temperature were seen for diesel fuel due to the formation of wall films. The modelling results also explained the origin of high-temperature NO x-producing regions due to the effect of the gas density on the spray.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献