Computational Fluid Dynamics Modelling of Residual Fuel Oil Combustion in the Context of Marine Diesel Engines

Author:

Goldsworthy L1

Affiliation:

1. Division of Academic and Research, Australian Maritime College, PO Box 986, Launceston 7250, Tasmania, Australia,

Abstract

A simplified model is presented for vaporization and combustion of heavy residual based fuel oil in high-pressure sprays, in the context of marine diesel engines. The fuel is considered as a mix of residual base and cutter stock. The model accounts for multiple fuel components as well as limited diffusion rates and thermal decomposition rates within droplets by the use of straight-line relationships for the saturation pressure of combustible fuel vapour at the droplet surface as functions of droplet temperature. The energy required for decomposition of heavy molecules is accounted for. Combustion is modelled using a timescale that is the sum of a kinetic timescale based on a single-step reaction and a turbulent timescale based on turbulent mixing rates. The ignition timescale is based on a simple three-equation model. Cellwise ignition is employed. The heavy fuel oil model is applied to two different constant volume chambers that are used to test ignition and combustion quality of marine heavy fuel oil, using the computational fluid dynamics code StarCD version 3.2. Good agreement is shown between trends in measured and computed data including ignition delay, burn rate and spatial distribution of spray and flame parameters. The model is tested for two representative fuels, one with good ignition and combustion properties and one poor. Essentially only two parameters need to be changed to set the fuel quality. These are the ignition delay factor and the activation energy for the high-temperature kinetics. Further tuning of the model to specific fuels is possible by modifying the saturation temperature relationships.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3