Influence of the contact—impact force model on the dynamic response of multi-body systems

Author:

Flores P1,Ambrósio J2,Claro J C P1,Lankarani H M3

Affiliation:

1. Departamento de Engenharia Mecânica, Universidade do Minho, Guimarães, Portugal

2. Instituto de Engenharia Mecânica (IDMEC), Instituto Superior Técnico, Lisboa, Portugal

3. Mechanical Engineering Department, Wichita State University, Kansas, USA

Abstract

This work deals with contact—impact force models for both spherical and cylindrical contact surfaces. The incorporation of the friction phenomenon, based on the Coulomb friction law, is also discussed together with an effective computational strategy, which includes the automatic step size selection procedure. Impacts within a revolute clearance joint in a basic slider—crank mechanism are used as an example to compare the different contact force models. The collision is a prominent phenomenon in many multi-body systems such as mechanisms with intermittent motion, kinematic discontinuities, and clearance joints. As a result of an impact, the values of the system state variables change very fast, eventually looking like discontinuities in the system velocities and accelerations. The impact is characterized by large forces that are applied and removed in a short time period. The knowledge of the peak forces developed in the impact process is very important for the dynamic analysis of multi-body systems and it has consequences in the design process. The model for the contact—impact force must consider the material and geometric properties of the colliding surfaces, consider information on the impact velocity, contribute to an efficient integration, and account for some level of energy dissipation. These characteristics are ensured with a continuous contact force model, in which the deformation and contact forces are considered as continuous functions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3