Comparisons of neural network models on surface roughness in electrical discharge machining

Author:

Pradhan M K1,Das R2,Biswas C K1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Rourkela, India

2. Department of Mathematics, Purushottam Institute of Engineering and Technology, Rourkela, India

Abstract

In this work, two different artificial neural network (ANN) models — back-propagation neural network (BPN) and radial basis function neural network (RBFN) — are presented for the prediction of surface roughness in die sinking electrical discharge machining (EDM). The pulse current (Ip), the pulse duration (Ton), and duty cycle (τ) are chosen as input variables with a constant voltage of 50 volt, and surface roughness is the output parameters of the model. A widespread series of EDM experiments was conducted on AISI D2 steel to acquire the data for training and testing and it was found that the neural models could predict the process performance with reasonable accuracy, under varying machining conditions. However, RBFN is faster than the BPNs and the BPN is reasonably more accurate. Moreover, they can be considered as valuable tools for EDM, by giving reliable predictions and provide a possible way to avoid time-and money-consuming experiments.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3