The Effect of the Cutting Edge Radius on a Machined Surface in the Nanoscale Ductile Mode Cutting of Silicon Wafer

Author:

Arefin S1,Li X P1,Cai M B1,Rahman M1,Liu K1,Tay A1

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, Singapore

Abstract

In this study, the effect of the cutting edge radius on a machined surface and subsurface in the nanoscale ductile mode cutting of silicon wafer is investigated through cutting tests using tools with edge radii ranging from 23 nm to 807 nm. The machined surface is examined using SEM, AFM, and Formtracer, with an etching technique used for SEM observation. The results show that if the cutting edge radius does not exceed a certain upper bound value, and the undeformed chip thickness is less than the cutting edge radius, it is possible to achieve both a surface and a subsurface free of cracks. Based on the molecular dynamics simulation of the nanoscale ductile mode cutting process of monocrystalline silicon wafer, it is found that the critical upper bound for the cutting edge radius in the ductile mode chip formation relates to the stress condition in the cutting region. The shear stress decreases as the tool edge radius is increased. As the cutting edge radius increases beyond the limit, the insufficient shear stress will cause both surface and subsurface damage on the machined workpiece. For the cutting of silicon under the same conditions, the limit for the cutting edge radius was found to be about 807 nm.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3