Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts

Author:

Ajoku U1,Saleh N1,Hopkinson N1,Hague R1,Erasenthiran P1

Affiliation:

1. Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK

Abstract

A study investigating the effects of part-build orientation in the laser sintering process is presented. The investigation uses tensile, flexural, and compression testing methods to assess the changes in the mechanical properties of laser-sintered nylon-12 parts. The test parts were built in the x, y, and z orientations with the x axis parallel to the direction of the laser scanning, the y axis perpendicular to the direction laser of scanning, and the z axis in the direction of powder layers. The results from the tests show that the build orientation of the parts has an effect on the mechanical properties produced. The tensile tests show a maximum difference of 16 per cent and 11.2 per cent in strength and modulus respectively for parts built in the x, y, and z axes. The flexural tests show a 9.4 per cent and 7 per cent maximum difference in strength and modulus respectively for the parts produced in the x, y, and z axes. For the compressive tests, there is a 3.4 per cent and 13.4 per cent maximum difference in strength and modulus respectively for the parts produced in the x, y, and z axes. A statistical analysis of the results obtained highlights the presence of anisotropy in tensile and compression parts owing to their build orientation in the laser sintering machine. The test parts built in the x axis orientation showed the highest strength and modulus values while the parts built in the z axis orientation showed poor strength and modulus values. However, this is not the case for the flexural test parts, which show the highest strength and modulus values are from those built in the y axis orientation. Analysis has shown that this is due to the end-of-vector effect, which is most prominent in the y axis orientation. This effect should always be considered during laser sintering, when mechanical integrity is vital.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3