Transient elastohydrodynamic analysis of elliptical contacts. Part 2: Thermal and Newtonian lubricant solution

Author:

Yang P1,Cui J1,Jin Z. M.2,Dowson D2

Affiliation:

1. Qingdao Technological University School of Mechanical Engineering Qingdao, People's Republic of China

2. University of Leeds School of Mechanical Engineering Leeds, UK

Abstract

Transient thermal elastohydrodynamic lubrication (EHL) of general elliptical point contacts was investigated numerically in this study. Both entrainment directions along the major and the minor axes of the contact ellipse were considered, together with a transient load impulse. In this study, a Newtonian lubricant was assumed to highlight the thermal influence. The transient solution was achieved at every instant, starting from a steady state thermal EHL solution. At each instant, a multilevel solver was used for pressure and surface deformation, whereas a column-by-column relaxation technique was used for solving temperature. The unknown rigid central distance between the contact bodies was adjusted after each iteration between the transient fields of pressure and temperature, so that in each iteration, only one W cycle was required for pressure and only a few relaxation cycles were required for temperature. With these numerical techniques, the computing time required for a typical transient case was reduced to ∼ 12 h on a personal computer with a 3.0 GHz central processing unit. The transient thermal results were compared with those corresponding to isothermal conditions presented in Part 1 of this series of papers. It was found that, in general, the transient behaviour under thermal conditions was similar to that under isothermal conditions, however, the former was weaker than the latter when the slide-roll ratio was large enough.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3