Fault classification of fluid power systems using a dynamics feature extraction technique and neural networks

Author:

Le T T1,Watton J1,Pham D T1

Affiliation:

1. University of Wales Cardiff Cardiff School of Engineering

Abstract

Multilayer perceptron (MLP) type neural networks and dynamic feature extraction techniques, namely linear prediction coding (LPC) and LPC cepstrum, are used to classify leakage type and to predict leakage flowrate magnitude in an electrohydraulic cylinder drive. Both single-leakage and multiple-leakage type faults are considered. A novel feature is that only pressure transient responses are employed as information. In addition, the feature extraction technique used to detect faults can result in a large data dimensionality reduction. The performance of two MLP models, namely serial and parallel, are studied to reflect the importance of the way data are presented to the MLP.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Diagnosis of Hydraulic Seal Wear and Internal Leakage Using Wavelets and Wavelet Neural Network;IEEE Transactions on Instrumentation and Measurement;2019-04

2. Leak detection using cepstrum of cross-correlation of transient pressure wave signals;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2017-08-21

3. Internal Leakage Detection in Electrohydrostatic Actuators Using Multiscale Analysis of Experimental Data;IEEE Transactions on Instrumentation and Measurement;2016-12

4. Robust leakage detection for electro hydraulic actuators using an adaptive nonlinear observer;International Journal of Precision Engineering and Manufacturing;2014-03

5. Detection and Isolation of Leakage and Valve Faults in Hydraulic Systems in Varying Loading Conditions, Part 2: Fault Detection and Isolation Scheme;International Journal of Fluid Power;2012-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3