Possible shortcomings of the calibration methods for certain non-destructive monitoring devices for helically wound steel cables

Author:

Raoof M1,Davies T. J1

Affiliation:

1. Civil and Building Engineering Department, Loughborough University, Loughborough, UK

Abstract

Coupled extensional–torsional behaviour of axially pre-loaded helically wound steel cables (wire ropes and/or spiral strands) under specific forms (i.e. unit-step, triangular, and half-sine) of impact loading are considered in some detail. The final closed-form formulations can handle both the no-slip and/or the traditionally used full-slip coupled extensional/torsional constitutive equations for helically wound cables, and describe the various characteristics of the resulting pairs of axial or torsional waves at any location along the cable with one end fixed against movement and the other end subjected to impact loading. By using extensive numerical results, which cover the full range of current manufacturing limits for the lay angle (with this being the sole controlling geometrical parameter as far as the axial/torsional stiffnesses are concerned), it is shown that significant differences exist between a number of axial/torsional wave characteristics, depending on whether the no-slip or the full-slip version of the constitutive relations is used in the analysis. It is demonstrated that modest increases in the magnitudes of the lay angles can lead to significant increases in the differences between the no-slip and the full-slip wave propagation characteristics. The present findings may have significant practical implications in relation to the currently adopted techniques used by industry for calibrating the electronic boxes, which are subsequently used as permanently installed devices, for the in situ detection of individual wire fractures under, say, fatigue loading associated with cable-supported structures.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3