Sensitivity analysis of cooling methods and geometric parameters in the assembly procedure of bascule bridge fulcra

Author:

Nguyen C1,Kaw A K1,Paul J1

Affiliation:

1. Department of Mechanical Engineering, University of South Florida, Tampa, Florida, USA

Abstract

To assemble the fulcrum of a bascule bridge, a trunnion is shrink fitted into a hub, followed by shrink fitting of the trunnion-hub (TH) assembly into the girder of the bridge. To shrink the TH assembly, it is cooled in a medium such as liquid nitrogen; however, during this process in some cases, the hub cracks. To reduce the possibility of such failures, a formal design-of-experiments study is conducted to find the influence of geometrical parameters such as the hub outer diameter and the radial interference (at the TH interface), and different cooling methods on design parameters such as the critical crack lengths and stress ratios. Cooling methods include immersion in, first, liquid nitrogen; second, a dry-ice-alcohol bath followed by liquid nitrogen; third, a refrigerated air chamber followed by liquid nitrogen; and, fourth, a refrigerated air chamber followed by a dry-ice-alcohol bath and then liquid nitrogen. The cooling method contributes the most to increasing the critical crack length (between 58 and 79 per cent) and increasing the stress ratio (between 48 and 84 per cent) when considering the TH assembly procedures in representative fulcrum geometries. Moreover, the second cooling method, which is immersion of the TH assembly in a dry-ice-alcohol bath followed by immersion in liquid nitrogen, gives larger critical crack lengths (between 262 and 406 per cent) and larger stress ratios (between 17 and 87 per cent) compared with the current cooling method that uses only liquid nitrogen.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3