The uniaxial and biaxial, monotonic and cyclic plasticity behaviour of a lead alloy model material

Author:

Hyde T H1

Affiliation:

1. Department of Mechanical Engineering, University of Nottingham

Abstract

A chill-cast, antimony-arsenic-lead alloy model material has been used to investigate the monotonic and cyclic loading, uniaxial and biaxial plasticity behaviour of a metal at elevated temperature, i.e., T/ Tm ≈ 0.5. For the lead alloy used, a post-machining heat treatment of 96h at 100 C considerably reduced the scatter in the material behaviour. Uniaxial monotonic loading tests showed that the behaviour is relatively independent of temperature and strain-rate for strains less than about 1 per cent. Under cyclic loading conditions, between fixed strain limits, a stable hysteresis loop is obtained after the first cycle for both uniaxial and biaxial stress systems. By taking into account the biaxiality ratio and the increase in yield-range caused by cyclic hardening, the uniaxial and biaxial, cyclic plasticity behaviour was reasonably accurately predicted from the uniaxial, monotonic loading behaviour.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-local energy based fatigue life calculation method under multiaxial variable amplitude loadings;International Journal of Fatigue;2013-09

2. Equivalent stress and total strain range predictions for multiaxial states of stress and strain;The Journal of Strain Analysis for Engineering Design;1999-01-01

3. The use of model materials to simulate creep behaviour;The Journal of Strain Analysis for Engineering Design;1994-07-01

4. Low cycle fatigue life predictions for hollow tubes with axially loaded axisymmetric internal projections;The Journal of Strain Analysis for Engineering Design;1991-04-01

5. An assessment of simple material behaviour models for predicting the mechanical ratchetting of a stepped beam;The Journal of Strain Analysis for Engineering Design;1985-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3