Some theoretical considerations relating to strain concentration in elastic-plastic bending of beams

Author:

Radomski M1,White D J2

Affiliation:

1. Flight Propulsion Division, General Electric Company, Cincinnati, Ohio

2. Mechanical Engineering Laboratories, English Electric Company, Whetstone, Leicester

Abstract

Theoretical derivations are presented for the relations between maximum deflection and the corresponding maximum strain for some simple beams subject to elastic-plastic bending. Both elastic-perfectly plastic and arbitrary stress-strain relations are considered. Where possible, explicit analytical solutions are given, but where this is not possible numerical solutions are obtained by means of computer programmes. The calculations show that in elastic-perfectly plastic material short plastic zones may develop and cause large strains in the beam even though the deflection corresponding to first yield is not greatly exceeded. On the other hand, strain hardening elongates the plastic zones, so producing a more favourable strain distribution along the length of the beam than would exist without it. The more pronounced the strain-hardening characteristic, i.e. the greater the rate of increase of stress with strain, the less concentrated will be the strains. The mode of loading is important in that the higher the rate of change of bending moment, in the region of ihe maximum bending moment, the more concentrated will be the local strains.

Publisher

SAGE Publications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biaxial Fatigue of A533B Pressure Vessel Steel;Journal of Pressure Vessel Technology;1997-08-01

2. Determination of Sub-Surface Distributions of Residual Stresses by a Holographic-Hole Drilling Technique;Journal of Engineering Materials and Technology;1997-01-01

3. Use of elastic calculations in analysis of fatigue (factor );Nuclear Engineering and Design;1989-05

4. Strain localization in beams under cyclic plastic straining at room and elevated temperature;Journal of Strain Analysis;1971-04-01

5. Design-stress basis for pressure vessels;Experimental Mechanics;1971-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3