Disc machine study of contact isolation during railway track sanding

Author:

Lewis R1,Dwyer-Joyce R. S.1,Lewis J2

Affiliation:

1. The University of Sheffield Department of Mechanical Engineering UK

2. Honley, Huddersfield Aegis Engineering Systems Limited UK

Abstract

An experimental study has been carried out to investigate the effect of sanding on the electrical isolation of a wheel/rail contact. Sand is applied to the wheel/rail interface to increase adhesion in both braking and traction. Train detection, for signalling purposes, can be by means of track circuits. Signalling block occupancy is triggered by the wheelset of the train ‘shorting out’ the track circuit. Sand in the wheel/rail interface means that contact between the wheelsets and the track may be compromised, inhibiting train identification. Tests were performed on a twin-disc machine where rail and wheel steel discs are loaded together and driven under controlled conditions of rolling and slip. Sand was fed into the disc contact through a standard compressed air sanding valve. The electrical circuit used was a simplified simulation of the TI21 track circuit. The application of sand with and without water to the discs was carried out under a range of mild and severe test conditions. The results indicated that a transition exists in the sand flowrate below which there is a measurable, but not severe, change in voltage, but above which the contact conductance decreases by an order of magnitude and the voltage tends towards its open-circuit value. The total isolation time also showed a similar transition. Contact resistance was modelled assuming full disc separation by a sand layer and partial disc contact with some sand present. Traction was monitored during the tests. A wet contact showed approximately half the traction of a dry contact. The addition of sand increased the traction to levels observed in a dry contact. Idealizations inherent in the test method mean that it represents a severe case. The disc geometry is smaller than a wheel/rail contact and both are in rotational motion. The sand nozzle was placed closer to the interface, leading to greater sand entrainment and low inductance. A fast data acquisition rate made the test circuit more sensitive to small fluctuations in isolation than an actual track circuit. Given these limitations, it is likely that the test method, at its present stage of development, should be used as a means to assess qualitatively the relative effects on electrical isolation of different contaminants.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3