Fuel chemistry and cetane effects on diesel homogeneous charge compression ignition performance, combustion, and emissions

Author:

Bunting B G1,Wildman C B1,Szybist J P1,Lewis S1,Storey J1

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Abstract

The effects of cetane number (CN) on homogeneous charge compression ignition (HCCI) performance and emissions were investigated in a single-cylinder engine with port fuel injection, using intake air temperature for control. Commercial fuels and blends of the diesel secondary reference fuels were evaluated, covering a CN range from 19 to 76. Sweeps of intake air temperature showed that low-CN fuels needed higher intake temperatures than high-CN fuels to achieve ignition. As a function of intake air temperature, each fuel passed through a point of maximum indicated mean effective pressure (i.m.e.p.). High-CN fuels required a combustion phasing approximately 10 crank angle degrees (CAD) earlier than the lowest CN fuels in order to prevent misfire. The high-CN fuels exhibited a strong low-temperature heat release (LTHR) event, while no LTHR was detected for fuels with CN ≤ 34. All of the fuels yielded comparable NOx emissions (< 6 ppm at 3.5 bar i.m.e.p.) at their respective maximum i.m.e.p. timeing. Low-CN fuels were prone to excessive pressure rise rates and NOx emissions at advanced phasing, while high-CN fuels were prone to excessive CO emissions at retarded phasing. These results suggest that the products of LTHR, which are high in CO, are more sensitive to the quenching effects of cylinder expansion. Engine speed was found to suppress LTHR since higher engine speed reduces the time allowed for the LTHR reactions. In addition to measurements of standard gaseous emissions, additional sampling and analysis techniques were used to identify and measure the individual exhaust HC species including an array of oxygenated compounds. In addition to high concentrations of formaldehyde and other low molecular weight carbonyls, results showed an abundance of organic acids, ranging from formic to nonanoic acid. Concentrations of high molecular weight partially oxidized species were highest for the high-CN fuels at retarded phasing, and are believed to be a direct product of LTHR.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3