Flow in valve covered orifice nozzles with cylindrical and tapered holes and link to cavitation erosion and engine exhaust emissions

Author:

Gavaises M1

Affiliation:

1. City University London, Northampton Square, London, UK

Abstract

Results from a research programme addressing the development, testing, and production of valve covered orifice (VCO) nozzles operating with current production Tier 3 off-highway diesel engines are reviewed. The common rail injectors operate at pressures exceeding 1300 bar and include pilot and main injection events. Although acceptable engine exhaust emissions can be obtained with conventional VCO nozzles, cavitation erosion may lead to mechanical failure of the nozzle. Redesigning the injector in terms of its durability against surface erosion has been obtained through use of a computational fluid dynamics (CFD) flow solver incorporating a two-phase cavitation model and flow visualization in enlarged transparent nozzle replicas. The model has provided evidence of the flow distribution under realistic pressure and needle lift opening scenarios while at the same time it has been calibrated to indicate the locations where the possibility of cavitation erosion may become significant. The experiments performed in enlarged transparent nozzle replicas have provided evidence of the string cavitation structures formed inside the different nozzle designs. Cross-correlation with engine emission tests indicates that string cavitation may be associated with increased engine exhaust emissions. Proposed injector designs with geometric modification easily implemented in the production series have been proved to be erosion-free while at the same time have improved the engine exhaust emissions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3