Understanding and modelling the torsional stiffness of harmonic drives through finite-element method

Author:

Rhéaume F-E1,Champliaud H1,Liu Z1

Affiliation:

1. Department of Mechanical Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Abstract

Torsional stiffness or rigidity is a crucial characteristic in the design of transmission devices, including harmonic drives (HDs). Among the various design aspects constituting a reduction mechanism in robotic systems, torsional stiffness is an important factor for positioning accuracy and control issues. One of the major advantages of HDs is their capacity to present a high reduction ratio while maintaining a small hardware size. However, manufacturing these drives remains a complex and costly process due to the high precision of its machined components; as a result, the use of such drives is still limited only to high-end mechanical products and technologies. Given these costs, numerical analysis becomes an effective alternative for obtaining valuable data through simulations, without the need for prototypes. This article presents a finite-element model to reproduce the behaviour of the torsional stiffness of an HD. The numerical model allows an evaluation of the effects of various geometrical parameters on the torsional stiffness of the HD. The numerical model of the HD can be used for optimization purposes, i.e. to develop an HD with a high torque capacity combined with a high-rated lifespan.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3