Modifications to the response of a parametrically excited cantilever beam by means of smart active elements

Author:

Su X1,Cartmell M P1

Affiliation:

1. Department of Mechanical Engineering, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

This article is concerned with applying active smart material elements for modifying parametric vibration in a flexible composite beam structure. The glass epoxy beam is bonded to two theoretically prestrained shape memory alloy (SMA) strips and fitted with a lumped end mass. In this study, the components of the recovery force generated during the SMA activation are derived with respect to a three-dimensional frame when the structure is undergoing combined bending and torsional motions. In order to employ Lagrangian dynamics, the generalized forces are formulated and the equations of motion are then derived. Three different parametric resonances for the structure are predicted by using the multiple scales perturbation method. In addition, the effects of the SMA strips on the natural frequencies, the mode shapes, and the instability regions of the structure are all investigated. It is shown that the different thresholds of instability for parametric resonances within a composite structure of this sort may be influenced by smart active elements.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3