Affiliation:
1. Nanyang Technological University School of Mechanical and Production Engineering Singapore
Abstract
The ability to have precise control over porosity, scaffold shape, and internal pore architecture is critical in tissue engineering. For anchorage-dependent cells, the presence of three-dimensional scaffolds with interconnected pore networks is crucial to aid in the proliferation and reorganization of cells. This research explored the potential of rapid prototyping techniques such as selective laser sintering to fabricate solvent-free porous composite polymeric scaffolds comprising of different blends of poly(ether-ether-ketone) (PEEK) and hydroxyapatite (HA). The architecture of the scaffolds was created with a scaffold library of cellular units and a corresponding algorithm to generate the structure. Test specimens were produced and characterized by varying the weight percentage, starting with 10 wt% HA to 40 wt% HA, of physically mixed PEEK-HA powder blends. Characterization analyses including porosity, microstructure, composition of the scaffolds, bioactivity, and in vitro cell viability of the scaffolds were conducted. The results obtained showed a promising approach in fabricating scaffolds which can produce controlled microarchitecture and higher consistency.
Subject
Mechanical Engineering,General Medicine
Cited by
131 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献