Numerical and experimental investigation of a low-pressure steam turbine during windage

Author:

Sigg R1,Heinz C1,Casey M V1,Sürken N2

Affiliation:

1. ITSM — Institute of Thermal Turbomachinery and Machinery Laboratory, Universität Stuttgart, Germany

2. Siemens AG, Energy Sector, Fossil Power Generation, Steam Turbine Technology, Mülheim an der Ruhr, Germany

Abstract

Modern steam power plants must operate safely at extremely low loads, known as windage, in which the low pressure (LP) turbine runs with decreased or even zero flow. Windage is characterized by a strongly unsteady three-dimensional (3D) flow field leading to possible aerodynamic excitations. Extensive flow field measurements were performed in an LP steam turbine test rig during windage, using pneumatic probes in the last stage and a diffuser. The flow field of the whole turbine was also calculated with steady 3D computational fluid dynamics (ANSYS CFX). Good agreement is found between the simulations and the measurements of the flow field, and the characteristic vortex structures behind the last rotor row are captured. The numerically predicted trends of power output, pressure ratio, and temperature of the last turbine blade row closely match the experimental data. The complex vortex flow in the stage is interpreted using both numerical and experimental results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference4 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3