Affiliation:
1. Kuwait University Chemical Engineering Department, College of Engineering and Petroleum Kuwait
2. Kuwait University Mechanical Engineering Department, College of Engineering and Petroleum Kuwait
Abstract
The brine circulation multistage flash desalination process (MSF) dominates the thermal desalination market, while the once-through multistage flash desalination process (MSF-OT) remains to be found on a limited scale. This is because the MSF-OT process has no control on the temperature of the feed sea water. For non-equatorial regions, where the sea water temperature drops to 5 — 15°C during winter operation, the MSF-OT performance deteriorates unless the volume of the low-temperature stages is drastically increased to allow for reduction in the brine reject temperature to lower values. Another approach to solving this problem is to use the brine mixing (MSF-M) technique to control the feed sea water temperature. Irrespective of this, the MSF-OT process should be considered the optimum choice for large-scale thermal desalination in equatorial regions, where the sea water temperature remains constant throughout the year at 28°C. This study focuses on design and performance features of the MSF-OT process. Results are presented in terms of variations in the process thermal performance ratio, the specific heat transfer area and the conversion ratio as a function of the top brine temperature, the number of flashing stages and the feed sea water temperature. The performance of the MSF-OT process is identical to the MSF process as long as the feed sea water temperature remains above 25°C. Evaluation of the MSF-M system and comparison with the performance of the MSF and MSF-OT processes is presented.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献