Transonic radial compressor inlet design

Author:

Lohmberg A1,Casey M1,Ammann S2

Affiliation:

1. Sulzer Innotec Winterthur, Switzerland

2. Axima Refrigeration Winterthur, Switzerland

Abstract

The design of radial compressor inlets for transonic flow is examined. A theoretical model [1] quantifies the losses in the tip sections caused by the choke margin (incidence) and the blockage of the blades. It identifies clear design rules for the tip sections: to achieve the highest efficiency, these require minimum blockage (low blade thickness and splitter vanes) and low choke margin (close to the unique-incidence condition). Simulations of the NASA rotor 37 transonic axial compressor (with CFX-TASCflow) are used to validate the use of three-dimensional viscous computational fluid dynamics (CFD) for transonic compressor inlets and to demonstrate that the key performance features suggested by the simple model are also modelled in three-dimensional viscous flow simulations. The simple model together with CFD simulations has been used for the design of tip sections at the inlet of a transonic radial compressor. CFD simulations were used to select the position of the shock to give a low choke margin, to reduce the preshock Mach number and also to optimize the shape and position of the leading edge of the splitter vanes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A design method of turboexpander-compressors based on multi-objective optimization applied to reverse brayton cycle;Applied Thermal Engineering;2024-10

2. Surrogate-based optimization of multiple-splitters radial compressor for solar hybrid microturbine;Energy Conversion and Management: X;2022-12

3. Investigating on performance parameters and flow field of centrifugal compressor based on the splitter blade leading edge’s location effect;Journal of Mechanical Science and Technology;2022-07-27

4. Redesign of casing treatment for a transonic centrifugal compressor based on a hybrid global optimization method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-08-18

5. Design of a transonic centrifugal compressor for High-speed turbomachinery;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3