Performance evaluation of reheat gas turbine cycles

Author:

Sarabchi K1

Affiliation:

1. University of Tabriz Department of Mechanical Engineering Tabriz, Iran

Abstract

The role of gas turbine power plants in electrical energy production has been considerably increased in the last two to three decades. Various methods have been proposed to improve the performance of gas turbine cycles. In this research, two methods, a reheat cycle (RC) and a cycle with a reheat and a heat exchanger (RHC), were investigated and compared with a simple cycle (SC). Today, to achieve a higher efficiency and capacity in gas turbines, higher turbine inlet temperatures (1300 °C and more) are used. Basically, application of such temperatures without turbine blade cooling is impossible. Therefore, analysis of gas turbine cycles without considering blade cooling in modelling will certainly not lead to a valid and correct result. The main objective of this paper is to study the performance of an RC and RHC under actual conditions. In this regard, all processes are treated as actual, and in particular a relatively simple and reliable approach is used to predict the amount of cooling air. It should be noted that there are many attempts being made to produce ceramic turbines, for which a much-reduced cooling requirement will be necessary. The results obtained on the basis of a model developed for this research show that reheating in the context of a realistic study may lead to an improvement both in efficiency and in specific net work.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3